Skip to content

Conversation

@dependabot
Copy link
Contributor

@dependabot dependabot bot commented on behalf of github May 9, 2025

Bumps matplotlib from 3.10.1 to 3.10.3.

Commits
  • 8b82729 REL: v3.10.3
  • 71e6946 REL prep 3.10.3
  • 0ef15b6 Merge pull request #30018 from meeseeksmachine/auto-backport-of-pr-29907-on-v...
  • 3b50d5c Backport PR #29907: Ensure text metric calculation always uses the text cache
  • acb7361 Merge pull request #30010 from rcomer/auto-backport-of-pr-29992-on-v3.10.x
  • 0ef1165 Backport PR #29992 on v3.10.x: Update pinned oldest win image on azure
  • 0595366 Merge pull request #29867 from QuLogic/auto-backport-of-pr-29827-on-v3.10.x
  • 9f40c83 Merge pull request #30002 from meeseeksmachine/auto-backport-of-pr-29673-on-v...
  • 95c87f2 Backport PR #29673: DOC: document the issues with overlaying new mpl on old mpl
  • a64d453 Merge pull request #29999 from QuLogic/auto-backport-of-pr-29997-on-v3.10.x
  • Additional commits viewable in compare view

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Bumps [matplotlib](https://github.com/matplotlib/matplotlib) from 3.10.1 to 3.10.3.
- [Release notes](https://github.com/matplotlib/matplotlib/releases)
- [Commits](matplotlib/matplotlib@v3.10.1...v3.10.3)

---
updated-dependencies:
- dependency-name: matplotlib
  dependency-version: 3.10.3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <[email protected]>
@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels May 9, 2025
@changeset-bot
Copy link

changeset-bot bot commented May 9, 2025

⚠️ No Changeset found

Latest commit: 04b76ac

Merging this PR will not cause a version bump for any packages. If these changes should not result in a new version, you're good to go. If these changes should result in a version bump, you need to add a changeset.

Click here to learn what changesets are, and how to add one.

Click here if you're a maintainer who wants to add a changeset to this PR

@github-actions
Copy link

github-actions bot commented May 9, 2025

Dependency Review

The following issues were found:
  • ✅ 0 vulnerable package(s)
  • ✅ 0 package(s) with incompatible licenses
  • ✅ 0 package(s) with invalid SPDX license definitions
  • ⚠️ 3 package(s) with unknown licenses.
See the Details below.

License Issues

Pipfile

PackageVersionLicenseIssue Type
matplotlib~> 3.10NullUnknown License

Pipfile.lock

PackageVersionLicenseIssue Type
matplotlib3.10.3NullUnknown License
packaging25.0NullUnknown License

OpenSSF Scorecard

PackageVersionScoreDetails
pip/matplotlib ~> 3.10 🟢 7.5
Details
CheckScoreReason
Code-Review🟢 10all changesets reviewed
Maintained🟢 1030 commit(s) and 19 issue activity found in the last 90 days -- score normalized to 10
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
CII-Best-Practices⚠️ 0no effort to earn an OpenSSF best practices badge detected
Security-Policy🟢 10security policy file detected
License🟢 9license file detected
Token-Permissions⚠️ 0detected GitHub workflow tokens with excessive permissions
Signed-Releases⚠️ -1no releases found
Binary-Artifacts🟢 10no binaries found in the repo
Branch-Protection🟢 8branch protection is not maximal on development and all release branches
Fuzzing🟢 10project is fuzzed
Pinned-Dependencies🟢 6dependency not pinned by hash detected -- score normalized to 6
Packaging🟢 10packaging workflow detected
Vulnerabilities⚠️ 018 existing vulnerabilities detected
SAST🟢 10SAST tool is run on all commits
pip/contourpy 1.3.2 🟢 5
Details
CheckScoreReason
Maintained🟢 1012 commit(s) and 2 issue activity found in the last 90 days -- score normalized to 10
Binary-Artifacts🟢 10no binaries found in the repo
Security-Policy🟢 10security policy file detected
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
Code-Review⚠️ 0Found 1/22 approved changesets -- score normalized to 0
Packaging⚠️ -1packaging workflow not detected
Token-Permissions⚠️ 0detected GitHub workflow tokens with excessive permissions
CII-Best-Practices⚠️ 0no effort to earn an OpenSSF best practices badge detected
Vulnerabilities🟢 100 existing vulnerabilities detected
License🟢 10license file detected
Fuzzing⚠️ 0project is not fuzzed
Signed-Releases⚠️ -1no releases found
Pinned-Dependencies⚠️ 0dependency not pinned by hash detected -- score normalized to 0
Branch-Protection⚠️ 0branch protection not enabled on development/release branches
SAST⚠️ 0SAST tool is not run on all commits -- score normalized to 0
pip/fonttools 4.57.0 🟢 6.8
Details
CheckScoreReason
Maintained🟢 1030 commit(s) and 15 issue activity found in the last 90 days -- score normalized to 10
Code-Review🟢 10all changesets reviewed
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
Token-Permissions⚠️ 0detected GitHub workflow tokens with excessive permissions
Security-Policy🟢 10security policy file detected
CII-Best-Practices⚠️ 0no effort to earn an OpenSSF best practices badge detected
License🟢 10license file detected
Signed-Releases⚠️ -1no releases found
Binary-Artifacts🟢 10no binaries found in the repo
Branch-Protection⚠️ -1internal error: error during branchesHandler.setup: internal error: githubv4.Query: Resource not accessible by integration
Fuzzing⚠️ 0project is not fuzzed
Vulnerabilities🟢 100 existing vulnerabilities detected
Pinned-Dependencies⚠️ 0dependency not pinned by hash detected -- score normalized to 0
Packaging🟢 10packaging workflow detected
SAST⚠️ 0SAST tool is not run on all commits -- score normalized to 0
pip/matplotlib 3.10.3 🟢 7.5
Details
CheckScoreReason
Code-Review🟢 10all changesets reviewed
Maintained🟢 1030 commit(s) and 19 issue activity found in the last 90 days -- score normalized to 10
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
CII-Best-Practices⚠️ 0no effort to earn an OpenSSF best practices badge detected
Security-Policy🟢 10security policy file detected
License🟢 9license file detected
Token-Permissions⚠️ 0detected GitHub workflow tokens with excessive permissions
Signed-Releases⚠️ -1no releases found
Binary-Artifacts🟢 10no binaries found in the repo
Branch-Protection🟢 8branch protection is not maximal on development and all release branches
Fuzzing🟢 10project is fuzzed
Pinned-Dependencies🟢 6dependency not pinned by hash detected -- score normalized to 6
Packaging🟢 10packaging workflow detected
Vulnerabilities⚠️ 018 existing vulnerabilities detected
SAST🟢 10SAST tool is run on all commits
pip/packaging 25.0 🟢 7.4
Details
CheckScoreReason
Maintained🟢 1011 commit(s) and 9 issue activity found in the last 90 days -- score normalized to 10
Packaging⚠️ -1packaging workflow not detected
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
Security-Policy🟢 9security policy file detected
Code-Review🟢 6Found 16/23 approved changesets -- score normalized to 6
Binary-Artifacts🟢 4binaries present in source code
Token-Permissions⚠️ 0detected GitHub workflow tokens with excessive permissions
Pinned-Dependencies🟢 10all dependencies are pinned
CII-Best-Practices⚠️ 0no effort to earn an OpenSSF best practices badge detected
License🟢 9license file detected
Fuzzing🟢 10project is fuzzed
Signed-Releases⚠️ -1no releases found
Branch-Protection⚠️ -1internal error: error during branchesHandler.setup: internal error: githubv4.Query: Resource not accessible by integration
Vulnerabilities🟢 91 existing vulnerabilities detected
SAST🟢 10SAST tool is run on all commits
pip/pillow 11.2.1 🟢 6.9
Details
CheckScoreReason
Code-Review🟢 10all changesets reviewed
Maintained🟢 1030 commit(s) and 27 issue activity found in the last 90 days -- score normalized to 10
Security-Policy🟢 10security policy file detected
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
CII-Best-Practices🟢 5badge detected: Passing
License🟢 9license file detected
Token-Permissions🟢 10GitHub workflow tokens follow principle of least privilege
Signed-Releases⚠️ -1no releases found
Binary-Artifacts🟢 10no binaries found in the repo
Fuzzing🟢 10project is fuzzed
Packaging🟢 10packaging workflow detected
Pinned-Dependencies⚠️ 0dependency not pinned by hash detected -- score normalized to 0
SAST⚠️ 0SAST tool is not run on all commits -- score normalized to 0
Vulnerabilities⚠️ 013 existing vulnerabilities detected
Branch-Protection⚠️ 0branch protection not enabled on development/release branches
pip/pyparsing 3.2.3 🟢 6.6
Details
CheckScoreReason
Maintained🟢 1030 commit(s) and 9 issue activity found in the last 90 days -- score normalized to 10
Code-Review⚠️ 0Found 0/30 approved changesets -- score normalized to 0
Packaging⚠️ -1packaging workflow not detected
Dangerous-Workflow🟢 10no dangerous workflow patterns detected
SAST⚠️ 0no SAST tool detected
Security-Policy🟢 10security policy file detected
Token-Permissions🟢 10GitHub workflow tokens follow principle of least privilege
CII-Best-Practices⚠️ 0no effort to earn an OpenSSF best practices badge detected
Binary-Artifacts🟢 10no binaries found in the repo
License🟢 10license file detected
Vulnerabilities🟢 100 existing vulnerabilities detected
Branch-Protection⚠️ -1internal error: error during branchesHandler.setup: internal error: githubv4.Query: Resource not accessible by integration
Signed-Releases⚠️ 0Project has not signed or included provenance with any releases.
Pinned-Dependencies⚠️ 0dependency not pinned by hash detected -- score normalized to 0
Fuzzing🟢 10project is fuzzed

Scanned Files

  • Pipfile
  • Pipfile.lock

@github-actions
Copy link

github-actions bot commented May 9, 2025

README stats current output:

Code Time

Profile Views

Lines of code

🐱 My GitHub Data

📦 1.3 MB Used in GitHub's Storage

🏆 385 Contributions in the Year 2025

💼 Opted to Hire

📜 387 Public Repositories

🔑 128 Private Repositories

I'm a Night 🦉

🌞 Morning                5702 commits        ██████░░░░░░░░░░░░░░░░░░░   25.28 % 
🌆 Daytime                4638 commits        █████░░░░░░░░░░░░░░░░░░░░   20.56 % 
🌃 Evening                10414 commits       ████████████░░░░░░░░░░░░░   46.16 % 
🌙 Night                  1805 commits        ██░░░░░░░░░░░░░░░░░░░░░░░   08.00 % 

📅 I'm Most Productive on Friday

Monday                   2010 commits        ██░░░░░░░░░░░░░░░░░░░░░░░   08.91 % 
Tuesday                  4031 commits        ████░░░░░░░░░░░░░░░░░░░░░   17.87 % 
Wednesday                4820 commits        █████░░░░░░░░░░░░░░░░░░░░   21.37 % 
Thursday                 2316 commits        ███░░░░░░░░░░░░░░░░░░░░░░   10.27 % 
Friday                   4888 commits        █████░░░░░░░░░░░░░░░░░░░░   21.67 % 
Saturday                 3103 commits        ███░░░░░░░░░░░░░░░░░░░░░░   13.76 % 
Sunday                   1391 commits        ██░░░░░░░░░░░░░░░░░░░░░░░   06.17 % 

📊 This Week I Spent My Time On

🕑︎ Time Zone: Asia/Jakarta

💬 Programming Languages: 
TypeScript               6 hrs 56 mins       █████████████░░░░░░░░░░░░   51.24 % 
JSON                     2 hrs 43 mins       █████░░░░░░░░░░░░░░░░░░░░   20.15 % 
Markdown                 1 hr 35 mins        ███░░░░░░░░░░░░░░░░░░░░░░   11.74 % 
Other                    56 mins             ██░░░░░░░░░░░░░░░░░░░░░░░   06.90 % 
YAML                     32 mins             █░░░░░░░░░░░░░░░░░░░░░░░░   04.02 % 

🔥 Editors: 
Cursor                   10 hrs 1 min        ███████████████████░░░░░░   74.08 % 
VS Code                  3 hrs 30 mins       ██████░░░░░░░░░░░░░░░░░░░   25.92 % 

🐱‍💻 Projects: 
redocly                  6 hrs 51 mins       █████████████░░░░░░░░░░░░   50.67 % 
zaform                   4 hrs 42 mins       █████████░░░░░░░░░░░░░░░░   34.80 % 
dietthing                45 mins             █░░░░░░░░░░░░░░░░░░░░░░░░   05.64 % 
modelcontextprotocol-serv42 mins             █░░░░░░░░░░░░░░░░░░░░░░░░   05.25 % 
byob                     14 mins             ░░░░░░░░░░░░░░░░░░░░░░░░░   01.76 % 

💻 Operating System: 
Mac                      9 hrs 56 mins       ██████████████████░░░░░░░   73.37 % 
Linux                    3 hrs 36 mins       ███████░░░░░░░░░░░░░░░░░░   26.63 % 

I Mostly Code in TypeScript

TypeScript               154 repos           ███████████░░░░░░░░░░░░░░   43.63 % 
Python                   9 repos             █░░░░░░░░░░░░░░░░░░░░░░░░   02.55 % 
MDX                      5 repos             ░░░░░░░░░░░░░░░░░░░░░░░░░   01.42 % 
Shell                    3 repos             ░░░░░░░░░░░░░░░░░░░░░░░░░   00.85 % 
Lua                      1 repo              ░░░░░░░░░░░░░░░░░░░░░░░░░   00.28 % 

Timeline

You can use this website to view the generated base64 image.



Last Updated on 09/05/2025 14:29:48 UTC

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

dependencies Pull requests that update a dependency file python Pull requests that update Python code

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant